Structure Reports

Online
ISSN 1600-5368

Wei Zhou, Weixiao Hu,* Luping Lv and Chunnian Xia

College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

Correspondence e-mail: huyang@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.033$
$w R$ factor $=0.103$
Data-to-parameter ratio $=12.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

10-(4-Fluorobenzylidene)anthrone

The title compound, $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{FO}$, was prepared from anthrone and 4-fluorobenzaldehyde. The central six-membered ring has an asymmetric boat conformation, in which the carbonyl C and the opposite C atom deviate from the plane of the other four atoms by 0.173 (2) and 0.319 (2) Å, respectively.

Comment

It has been reported recently that derivatives of 10 -substituted anthrone have a high potential for anticancer activity (Paull et al., 1992). In a continuation of our work on the structureactivity relationships (SAR) of derivatives of 10 -substituted anthrone (Hu \& Zhou, 2004), we obtained crystals of the title compound, (I), which were prepared by reacting anthrone with 4-fluorobenzaldhyde. The structure of the product was determined by X-ray diffraction.

(I)

The molecular structure of (I) is illustrated in Fig. 1. Selected bond lengths and angles are listed in Table 1. Atoms C11-C14 are coplanar within 0.0055 (7) A, while atoms C5 and C10 deviate from this plane by 0.173 (2) and 0.319 (2) \AA, respectively.

Experimental

To a mixture of anthrone ($4.0 \mathrm{~g}, 20 \mathrm{mmol}$) and 4 -fluorobenzaldhyde ($3.0 \mathrm{~g}, 24 \mathrm{mmol}$) were added pyridine (30 ml) and piperidine (0.5 g , $6 \mathrm{mmol})$. The reaction mixture was refluxed for 6 h . The completion of the reaction of the anthrone was confirmed by thin-layer chromatography. The mixture was cooled to room temperature, poured into methanol (75 ml) and put in a refrigerator overnight. The precipitate was collected and recrystallized twice from acetic acid to afford yellow crystals (1.4 g , yield 23.3%, m.p. 378-381 K).

Received 20 January 2005
Accepted 24 January 2005
Online 12 February 2005

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{FO}$
$M_{r}=300.31$
Monoclinic, $P 2_{1} / c$
$a=10.044(6) \AA$
$b=11.398(3) \AA$
$c=13.820(3) \AA$
$\beta=109.79(4)^{\circ}$
$V=1488.7(10) \AA^{3}$
$Z=4$
$D_{x}=1.340 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=300.31$
Monoclinic, $P 2_{d} / c$
$a=10.044$ (6) A
$b=11.398$ (3) A
$\beta=109.79(4)^{\circ}$
$V=1488.7(10) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=11.1-12.7^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Prism, colorless $0.50 \times 0.40 \times 0.40 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none 3137 measured reflections 2673 independent reflections 2026 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.012$

Refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0525 P)^{2}\right. \\
& +0.247 P \text {] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.18 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.14 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0058 \text { (11) }
\end{aligned}
$$

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.103$
$S=1.04$
2673 reflections
209 parameters
H -atom parameters constrained
$\theta_{\text {max }}=25.2^{\circ}$
$h=0 \rightarrow 12$
$k=-1 \rightarrow 13$
$l=-16 \rightarrow 15$
3 standard reflections frequency: 60 min intensity decay: none

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

F1-C19	$1.3598(19)$	C5-C15	$1.338(2)$
O1-C10	$1.2209(17)$	C15-C16	$1.470(2)$
C15-C5-C13	$125.88(13)$	O1-C10-C12	$121.76(14)$
C15-C5-C14	$118.82(12)$	C17-C16-C15	$118.41(13)$
O1-C10-C11	$121.44(14)$	C21-C16-C15	$123.65(13)$
C13-C5-C15-C16	$4.4(2)$	C5-C15-C16-C17	$-146.85(16)$
C14-C5-C15-C16	$-171.30(14)$	C5-C15-C16-C21	$37.3(2)$

The H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.93 \AA$) and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom).

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \&

Figure 1
The structure of (I), shown with 30% probability displacement ellipsoids.

Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We are grateful to the National Natural and Scientific Foundation (grant No. 20272053) and Zhejiang Natural and Scientific Foundation (grant No. 011101937) for financial support.

References

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Hu, W. X. \& Zhou, W. (2004). Bioorg. Med. Chem. Lett. 14, 621-622.
Paull, K. D., Lin, C. M., Malspeis, L. \& Hamel, E. (1992). Cancer Res. 52, 38923900.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

